169 research outputs found

    On the Periodic Lorentz Gas and the Lorentz Kinetic Equation

    Get PDF
    We prove that the Boltzmann-Grad limit of the Lorentz gas with periodic distribution of scatterers cannot be described with a linear Boltzmann equation. This is at variance with the case of a Poisson distribution of scatterers, for which the convergence to the linear Boltzmann equation has been proved by Gallavotti [Phys. Rev. (2) 185 (1969), p. 308]

    Optimal Regularizing Effect for Scalar Conservation Laws

    Full text link
    We investigate the regularity of bounded weak solutions of scalar conservation laws with uniformly convex flux in space dimension one, satisfying an entropy condition with entropy production term that is a signed Radon measure. The proof is based on the kinetic formulation of scalar conservation laws and on an interaction estimate in physical space.Comment: 24 pages, assumption (11) in Theorem 3.1 modified together with the example on p. 7, one remark added after the proof of Lemma 4.3, some typos correcte

    The Schr\"odinger Equation in the Mean-Field and Semiclassical Regime

    Full text link
    In this paper, we establish (1) the classical limit of the Hartree equation leading to the Vlasov equation, (2) the classical limit of the NN-body linear Schr\"{o}dinger equation uniformly in N leading to the N-body Liouville equation of classical mechanics and (3) the simultaneous mean-field and classical limit of the N-body linear Schr\"{o}dinger equation leading to the Vlasov equation. In all these limits, we assume that the gradient of the interaction potential is Lipschitz continuous. All our results are formulated as estimates involving a quantum analogue of the Monge-Kantorovich distance of exponent 2 adapted to the classical limit, reminiscent of, but different from the one defined in [F. Golse, C. Mouhot, T. Paul, Commun. Math. Phys. 343 (2016), 165-205]. As a by-product, we also provide bounds on the quadratic Monge-Kantorovich distances between the classical densities and the Husimi functions of the quantum density matrices.Comment: 33 page

    The Boltzmann-Grad limit of the periodic Lorentz gas in two space dimensions

    Get PDF
    The periodic Lorentz gas is the dynamical system corresponding to the free motion of a point particle in a periodic system of fixed spherical obstacles of radius rr centered at the integer points, assuming all collisions of the particle with the obstacles to be elastic. In this Note, we study this motion on time intervals of order 1/r1/r and in the limit as r→0+r\to 0^+, in the case of two space dimensions

    Nonlinear Regularizing Effect for Conservation Laws

    No full text
    20 pagesInternational audienceCompactness of families of solutions --- or of approximate solutions --- is a feature that distinguishes certain classes of nonlinear hyperbolic equations from the case of linear hyperbolic equations, in space dimension one. This paper shows that some classical compactness results in the context of hyperbolic conservation laws, such as the Lax compactness theorem for the entropy solution semigroup associated with a nonlinear scalar conservation laws with convex flux, or the Tartar-DiPerna compensated compactness method, can be turned into quantitative compactness estimates --- in terms of epsilon-entropy, for instance --- or even nonlinear regularization estimates. This regularizing effect caused by the nonlinearity is discussed in detail on two examples: a) the case of a scalar conservation law with convex flux, and b) the case of isentropic gas dynamics, in space dimension one

    The mean-field limit for the dynamics of large particle systems

    Get PDF
    This short course explains how the usual mean-field evolution PDEs in Statistical Physics — such as the Vlasov-Poisson, Schrödinger-Poisson or time-dependent Hartree-Fock equations — are rigorously derived from first principles, i.e. from the fundamental microscopic models that govern the evolution of large, interacting particle systems

    The Incompressible Euler Limit of the Boltzmann Equation with Accommodation Boundary Condition

    Get PDF
    The convergence of solutions of the incompressible Navier-Stokes equations set in a domain with boundary to solutions of the Euler equations in the large Reynolds number limit is a challenging open problem both in 2 and 3 space dimensions. In particular it is distinct from the question of existence in the large of a smooth solution of the initial-boundary value problem for the Euler equations. The present paper proposes three results in that direction. First, if the solutions of the Navier-Stokes equations satisfy a slip boundary condition with vanishing slip coefficient in the large Reynolds number limit, we show by an energy method that they converge to the classical solution of the Euler equations on its time interval of existence. Next we show that the incompressible Navier-Stokes limit of the Boltzmann equation with Maxwell's accommodation condition at the boundary is governed by the Navier-Stokes equations with slip boundary condition, and we express the slip coefficient at the fluid level in terms of the accommodation parameter at the kinetic level. This second result is formal, in the style of [Bardos-Golse-Levermore, J. Stat. Phys. 63 (1991), 323-344]. Finally, we establish the incompressible Euler limit of the Boltzmann equation set in a domain with boundary with Maxwell's accommodation condition assuming that the accommodation parameter is small enough in terms of the Knudsen number. Our proof uses the relative entropy method following closely the analysis in [L. Saint-Raymond, Arch. Ration. Mech. Anal. 166 (2003), 47-80] in the case of the 3-torus, except for the boundary terms, which require special treatment.Comment: 40 page

    De Newton à Boltzmann et Einstein : validation des modèles cinétiques et de diffusion,: d’après T. Bodineau, I. Gallagher, L. Saint-Raymond, B. Texier

    No full text
    39 pages. Séminaire Bourbaki, Mars 2014International audienceLa théorie cinétique des gaz de Maxwell et Boltzmann s’est trouvée au cœur de controverses scientifiques majeures. L’incompatibilité supposée entre le caractère réversible des équations de la mécanique classique et l’augmentation de l’entropie, qui, dans le cadre de la théorie cinétique des gaz, est une propriété mathématique de l’équation de Boltzmann connue sous le nom de théorème H, était l’un des arguments couramment utilisés contre la validité de cette théorie. Il a fallu attendre environ un siècle pour que O. Lanford propose, en 1974, une stratégie de preuve permettant de démontrer que l’équation de Boltzmann décrit une certaine limite asymptotique des équations de Newton de la mécanique classique pour un système formé d’un très grand nombre N de particules sphériques identiques n’interagissant qu’au cours de collisions élastiques. Un travail récent de I. Gallagher, L. Saint-Raymond et B. Texier précise la preuve de Lanford et l’étend au cas où l’interaction entre particules est décrite par un potentiel à très courte portée. Un article ultérieur de T. Bodineau, I. Gallagher et L. Saint-Raymond étudie ensuite la dynamique d’une particule marquée parmi N dans la même limite asymptotique, établissant ainsi la validité de l’équation de Boltzmann linéaire sur un intervalle de temps dont la longueur tend vers l’infini avec N. En utilisant des résultats aujourd’hui classiques sur la théorie asymptotique de l’équation de Boltzmann linéaire, les mêmes auteurs démontrent que le processus stochastique connu sous le nom de mouvement brownien décrit une certaine limite de la dynamique déterministe de particules en interaction
    • …
    corecore